
1 Unified semantics for trustworthy systems engineering| Altreonic

Unified semantics for
trustworthy systems engineering

This paper describes the theoretical principles and associated meta-model of a unified trustworthy

systems engineering approach developed by Altreonic. Guiding principles are ``unified semantics'' and

``interacting entities''. Proof of concept projects have shown that the approach is valid for any type of

processes, also non technical engineering ones. The meta-model was used as a guideline to develop the

GoedelWorks internet based platform supporting the process view (focused on requirements

engineering), the modelling process view as well as the workplan development view. Of particular

interest is the integration of an automotive safety engineering process that was developed to cover

multiple safety standards.

1 Introduction

Systems Engineering (SE) is considered to be the process that transforms a need into a working system.

Discovering what the real need is often already a challenge as it is the result of the interaction of many

stakeholders, each of them expressing their ``requirements'' in the language specific to their domain of

expertise. None of the stakeholders will have a complete view outside his domain of interest and often

will not be able to imagine what will be the final system. The problem is partly due to the fact that we

use natural language and that our domain of expertise is always limited. In order to overcome these

obstacles, formalization is required. The meta-model we developed is an attempt to achieve this in the

domain of SE. In terms of the guiding principles, unified semantics comes down to defining univocal and

orthogonal concepts. The interacting entities paradigm defines how these concepts are linked. The

result is called a ``systems grammar'' in analogy with the rules of language that allow us to construct

meaningful sentences (an entity), a chapter (a system) or a book (a system of systems). It defines the SE

terms (standing for conceptual entities) and the rules on how to combine the conceptual entities in the

right way to obtain a (trustworthy) system. What complicates the matter is that a system in the end is

defined not only by its final purpose but also by its history (e.g. precursors), by the process that was

followed to develop it and by the way its composing entities were selected and put together. Each

corresponds to a different view and it is the combination of these views that result in a unique system,

even if a different system could have been developed on the basis of the stated requirements.

Note that a process can also be considered as a system. The main difference with a system that is being

developed is that the composing entities and they way they interact are different. For example humans

will communicate and execute a process that delivers one or more results. The system being developed

will be composed of several sub-systems that in combination execute a desired function, often

transforming inputs into outputs. A process can therefore be seen as a meta level system model for a

concrete project.

2 Unified semantics for trustworthy systems engineering| Altreonic

An important aid in the formalisation of SE is abstraction. An activity whereby lower levels concepts are

grouped in separate, preferably orthogonal meta-level entities and whereby the specific differences are

abstracted away. One could call this categorisation, but this ignores that the meta-level entities still have

meta-level links (a form of interactions). This process can be repeated to define a next higher level, the

meta-meta-level, until only one very generic concept is left. The exercise is complete if the reverse

operation allows to derive the concrete system by using refinement. One could say that this is not

different from what modelling defines. There is certainly an overlap, but what makes the approach

different is that our approach does not just try to describe what exists, but tries to find the minimum set

of conceptual entities and interactions that are sufficient to be used as meta-models across different

domains. This is often counter intuitive because it doesn't align with our use of natural language. The

latter is often very flexible, but therefore also very imprecise. Natural language is also associative

whereby human communication is full of unspoken context information. Engineers have here a source

of a fundamental conflict. To prove the ``correctness'' of a system, it must be described in unambiguous

terms. At the same time even when using formal techniques, the use of natural language is unavoidable

to allow discussing about the formal properties and e.g. architecture of the system. Precise

mathematical expressions are by convention bounded with imprecise natural language concepts.

In this white paper we present a middle ground. As a full mathematical approach is not yet within reach

of the scale of systems engineering in general, formalisation was achieved by defining a meta-model

that formalises the domain. Only 17 orthogonal concepts were needed to define most SE domains. The

resulting framework was proven to be capable of being mapped to a safety engineering process. Also

many explicit guidelines or requirements of traditional safety engineering standards are found back.

From the generic meta-level, we can deduct more specific meta-models by refinement.

2 Related Work

The work presented in this paper is closely related with work going on in other domains, such as

architectural modelling. This has resulted in a number of graphical development tools and modelling

languages such as UML [1] and SysML [2]. These approaches however suffer from a number of

shortcomings:

 Most of the architectural models were developed bottom-up, e.g. as a means of representing

graphically what was first defined in a textual format. Hence, such approaches are driven by the

architecture of the system and its implementation. As we witnessed often, even when formal

methods are used, such an approach biases the stakeholders to think in terms of known design

patterns and results in less optimal system solutions. The OpenComRTOS project described in

[3] has made this very clear but has also shown how formalisation can overcome this.

 Most of the modelling approaches limit themselves to a specific architectural domain only,

requiring other tools to support the other SE domains. This poses the problem of keeping

semantic consistency and hence introduces errors.

3 Unified semantics for trustworthy systems engineering| Altreonic

 Most of the tools have no formal basis and hence have too many terms and concepts that seem

to overlap semantically. In other words, orthogonality and separation of concerns is weak or

lacking.

Despite these short comings, when properly used, such architectural modelling contribute to a better

development process. Overall the approach we propose and implemented in GoedelWorks emphasizes

the cognitive aspect of the SE process whereas the different activities are actually just different ``views''

on the system under development. Most of the related approaches do not take these aspects into

account.

The remainder of the white paper is organized as follows. The motivation behind the formalization of

concepts and their relations are described in the next chapter. Which also presents the link between the

abstract, domain independent meta-ontological level, and the domain specific ontological level. The

concepts and the unified systems grammar itself are further described. This formalization can also guide

the definition and implementation of a concrete instantiation of a SE process. Case studies, which

demonstrate that this approach can be applied to different domains, conclude this paper.

3 Introduction to Systems Engineering

Here we give an introduction to our view on Systems Engineering, which provides the framework of

understanding the 17 concepts of System Engineering on which more details are given later.

3.1 Intentional Approach to Systems Engineering
Systems Engineering is the process that transforms a need into a working system. Initially we describe

the system from the ``intentional'' perspective. Example: ``We want to put a human on the moon''.

From this perspective we can derive what the system is supposed to be (or to do). Another perspective

is the architectural one. This perspective shows us how the system can be implemented. Often several

implementations can meet the intentional goals and part of the systems engineering work is to make

the right trade-off decisions.

At the highest intentional level, we can speak of the ``mission'' of the system. The mission is the top

level requirement that the system must meet. In order to achieve the mission, a system will be

composed of sub-elements (often called components, modules or subsystems). These elements are

called "entities" and the way they relate to each other are called "interactions". The term system is used

when multiple combined interacting entities fulfil a functionality, that they individually do not fulfil.

Note however that any system component has often been developed in a prior project, hence the

notion of ``System of Systems'' emerges naturally. For example, a plane is a system of interacting

entities (i.e. body, wings, engine, etc.) that separately all fall under the influence of gravity, but can fly as

a whole. Similarly an embedded system is often assembled from standardised hardware and software

components, but it's only when put together and an application specific layer is added that the

embedded system can provides us with the required functionality.

4 Unified semantics for trustworthy systems engineering| Altreonic

As entities and interactions form a system architecture, all requirements achieve the mission of a system

as an aggregate. However, requirement statements are often vague or imprecise because they assume

an unspoken context. To be usable in the engineering domain we need to refine them into quantifiable

statements. We say that we derive specifications. In doing so, we restrict the SE state space guided by

the constraints that we must be able to meet by selecting from all the possible implementations the

ones that meet all our requirements, or at least most of them. In the SE domain we link specifications

with test cases allowing us to confirm that a given implementation meets the derived specifications in a

quantifiable way. An example requirement statement could be ``a low noise receiver''. The derived

specification could be ``85 dB S/N ratio in the frequency band F1-F2''. We can then define a test that will

measure a given implementation. The specification also defines boundary conditions (e.g. cost, size) for

the implementation choices and the context in which the system will meet the requirements. Hence, the

input for the architectural design is taken from the specifications and not directly from the

requirements.

In practice the use of the terms requirements and specifications is not always consistent and the terms

are often confused. Some people even use the term ``requirement specification'', a rather ambiguous

one. Hence, we consistently use the term ``requirement'' when the required systems properties are not

linked with a measurable test case. Once this is done, we can speak of a ``specification''. Further on, we

will introduce an upper case convention to make that even more explicit.

From the structural or architectural perspective a system is defined by entities and interactions between

entities. An entity is defined by its attributes and functional properties. An attribute is an intrinsic

characteristic of an entity. Attributes reflect qualitative and quantitative properties of an entity (e.g.

colour, speed, size etc.) and have their own names, types and values. For example, the name and the

purpose are descriptive attributes of an any entity. A function defines the intended behaviour of an

entity. An entity can have more than one function. We use the term function in two ways:

 The traditional ``use case'' of entities (corresponding with the intentional view above);

 The entities' internal behaviour.

Functions define the internal behaviour as opposed to external interactions. In a first approach,

interactions are defined using a partial order, i.e. implemented as a sequence of messages. Interactions

are caused by events and are implemented by messages. An interaction structure corresponds to a

protocol and can be defined with inputs and outputs in form of a functional flow diagram. State

diagrams can be used to show event-function pairs on the transition lines between states.

An event is any transition that can take place in a system. An event can be the result of an entity

attribute change (i.e. of changing the entity's state). A message can cause and can be caused by an event

whereby the interaction between entities results in changes to their attributes and their state. E.g. in

software systems an interaction implies some form of data transfer or messages between entities. Such

messages can also invoke appropriate functions internal to the entity.

5 Unified semantics for trustworthy systems engineering| Altreonic

Interfaces belong to the structural part of an entity. An interface is the boundary domain of interaction

between an entity and another entity. Interfaces can have input or output types, which define data,

energy or information directions at interaction areas between the entities. Examples are an electric

socket (input: electrical power or current), a fuel pipeline (output from the tank), or an USB port (input-

output).

Interfaces and interactions are related by the fact that an interface transforms an entity internal event

into an external message. A second entity will receive such a message through its interface,

transforming the external message into an internal form. An interface can also filter received messages

and invoke the appropriate entity internal functions. It should be noted that while an interaction

happens between two entities, the medium, that enables the interaction, can be a system in its own

right. We also need to take into account that its properties may affect the system behaviour. Examples

are Internet backbones, long hydraulic channels, transmission lines, etc. One should also note, that the

use of the terms ``events'', ``messages'' and ``protocol'' is more appropriate in the domain of embedded

systems, but an interaction can also be an energy or force transfer between mechanical components. Or

even two people discussing a topic or executing a trained dialogue. Examples are a rally pilot and his

copilot navigating the streets.

Another important view in systems engineering is the project development view derived from the

architectural decomposition of the system. In this view, once all entities have been identified, they are

grouped into work packages for project planning. Each work package is divided into tasks with

attributes, such as: duration, resources, milestones, deadlines, responsible person, etc. Defining the

timeline of the workplan (i.e. deadlines, periods, limits etc.) and the workplan tasks are important

system development stages. Selecting such measures and attaching them to work packages leads to the

workplan specification.

3.2 Intentional Requirements, concrete Specification
As mentioned above, a system is described at the highest level by its requirements. Requirements are

captured at the initial point of the system definition process and must be transformed into measurable

specifications. These specifications are to be fulfilled by structured architectural elements (i.e. entities-

interactions, attributes-values, event-function pairs).

Any entity has attributes with values of the appropriate type. For example if we consider the

requirement ``the acceleration of the car is at least as high as the acceleration of the top 5 competitors'',

we have an entity decomposition (`car'), which maps onto an attribute-value decomposition (with

typification of attribute `acceleration' in the type `at least as high as' and value `top 5').

This means that at the cognitive level the qualitative requirements produce entities, interactions (i.e.

architectural descriptions) and specifications (i.e. normal cases, test cases, failure cases), work plans,

and also issues, to be resolved. The order of this sequence is essential and constitutes a process of

refinement whereby we go from the more abstract to the more concrete.

6 Unified semantics for trustworthy systems engineering| Altreonic

Figure 1 Graphical Representation of the Dependency Links within a GoedelWorks Project.

Using a coherent and unified systems grammar provides us with the basis for building cognitive models

from initially disjoint user requests. Requirements and specifications are not just a collection of

statements, but represent a cognitive model of the system with a structure corresponding to the system

grammar's relations.

Capturing requirements and specifications is a process of system description. Specifications are derived

from the more general requirements. This is necessary in order to make requirements verifiable by

measurements. E.g. the initial requirement ``the car should be fast'' can be transformed into the

specifications ``accelerating from 0 to 100 km/h in 6 seconds'' and ``having a top speed of at least 200

km/h''.

Specifications are often formulated with the (hidden) assumption that the system operates without

observable or latent problems. We call this the ``normal cases''. However, this is not enough.

Specifications are met when they pass ``test cases'', which often describe the specific tests that must

executed in order to verify the specifications. In correspondence to test cases we define ``failure cases'',

i.e. a sequence of events that can result in a system fault and for which the system design should cater.

Note that security properties are considered as a sub-type of safety cases. We elaborate this further in

the text.

7 Unified semantics for trustworthy systems engineering| Altreonic

4 The Notion of a Systems Grammar as a Meta-Model

In this section we outline the meta-model and its 17 concepts. We first list and define these concepts. To

differentiate from the natural language terms, we use upper case for the first letter. Next we discuss the

relationships between the concepts, the different views in SE and how this results in a process flow.

4.1 Overview of the Meta-Model
When we use the term System we assume it is being developed in the context of a Project. During the

Project a defined Process is followed. The Meta-Model developed uses the following 17 concepts:

1. System: The System is considered to be the root of all concepts. It identifies a System as being

defined by a (development) Project on the one hand and a (Systems Engineering) Process on the

other hand. Acronym: SYS

2. Project: The set of activities that together result in the system becoming available and meeting

all requirements. The Project is executed by following a defined Process. Acronym: PRJ

3. Process: A set of partially ordered activities or steps that is repeatable and produces the system.

Examples are a safety process (e.g. meeting safety standards like ISO-26262, DO-178C), a

development process, a testing process, a validation processes. Acronym: PRO

4. Reference: Any relevant information that is not specific to the system under development but

relevant to the domain in general. Examples: datasheets, applicable standards, background

articles, etc. Acronym: REF

5. Requirement: Any statement about the system by any stakeholder who is directly or indirectly

involved. Examples: ``The system should be safe to use'', ``The system shall be environmentally

friendly'', ``The system shall meet avionic requirements'', ``The box shall be a red one''.

Acronym: REF

6. Specification: Specifications are derived from Requirements by refinement. The criterion for the

derivation is that the resulting Specification must be testable. Example: ``The colour of the box

shall be red with RGB values (250, 20, 10) with an allowed deviation of 5 units per colour''.

Acronym: SPC

7. Work Product: The result of a Work Package. An example of a Process related Work Product is a

Test Report. For example, in the Project a receiver is developed that when tested meets the

Specifications that are documented in the Test Report. Acronym: WPT

8. Model: A model is a specific system-level implementation of a partial or full set of specifications.

A model is composed of Entities and is a Project related Work Product. Examples are: a

simulation model, a virtual prototype, a formal model, the implemented system (as the final

Work Product). Acronym: MOD

9. Entity: An Entity is a composing subset of a model. The interactions create the emerging system

properties. Examples are the power supply of a developed receiver, the enclosure and the

antenna of a receiver being developed. Acronym: ENT

10. Work Package: A set of Tasks that using Resources produces a Work Product that meets

Requirements and Specifications. A Work Package shall at least have a Development, a

8 Unified semantics for trustworthy systems engineering| Altreonic

Verification, a Test and a Validation-Task. Examples are: "The antenna related Work Package",

the "Requirement review" Work Package, etc. Acronym: WP

11. Development Task: A Task that takes as input the Specifications and develops the Work

Products. Examples are: writing the source code of a controller program, selecting and

assembling the components of an enclosure, developing a PCB, etc. Acronym: DVT

12. Verification Task: A Task that verifies that the work done in the Development-Task meets the

Process related Requirements and Specifications. An example is to verify that e.g. coding rules

were followed during software development or simply that the right compiler switches were

enabled. Acronym: VET

13. Test Task: A Task that verifies that the result of a verified Work Product meets the System

related Specifications. An example is to have the colour of a box tested with a test set-up and

measure the RGB values or measuring the frequency spectrum with a frequency analyser using

predefined test signals using the equipment specified in the test plan. Acronym: TET

14. Validation Task: A Task that verifies that the tested Work Product meets the System related

Requirements after integration with all Work Products constituting the System. An example is to

validate that the assembled end-product is indeed a low-noise receiver or that when a system

failure is injected, the system really comes to a fail-safe mode or switches to a hot backup

controller. Acronym: VAT

15. Resource: A Resource is anything that is needed for a Work Package to be executed. Examples

are people, equipment, financial resources, etc. Acronym: RES

16. Issue: An issue is anything that comes up during the Project that requires further investigation,

mainly to determine if the issue is a real concern. For example, an engineer has a suspicion that

an O-ring could pose problems in cold weather conditions and he is not sure that this was taken

into account. Acronym: ISS

17. Change Request: A Change Request is an explicit request to modify an already approved Project

Entity. An example is that the issue related to the O-ring was found to be a valid concern and as

a result a different O-ring material need to be used, resulting in an important re-engineering

work. Acronym: CHR

Figure 2 illustrates this graphically using the three letter acronyms mentioned above. It shows how a

system is defined by a Project and by a Process followed during the development. The deliverables are

always Work Products (Models as Project Work Products and Process Work Products). However the

Process to be followed needs to have been developed as well.

We make abstraction here from often domain specific sub-typing (often introduced by qualifying

attributes). One must be careful to keep the subtypes to a minimum and orthogonal set. Otherwise, the

terminology confusion will creep in again.

9 Unified semantics for trustworthy systems engineering| Altreonic

Figure 2 Graphical Representation of the GoedelWorks Meta-Model

The attentive reader will have noticed that the definitions above might not fully agree with his own

notions and still leave some room for interpretation. This is largely due to the ambiguities of natural

language and established but not necessarily coherent practices in how people use the natural language

terms. In practice we also often observe that the same term can present in English a noun or a verb and

only the context allows to distinguish between the two. The issue leads to confusion because people use

shortcuts when communicating, typically omitting context related information.

This was for example confirmed by a survey done in the context of the FP7 OPENCOSS project whereby

the respondents were asked to define certain terms and often came up with very different and even

non-overlapping definitions.

10 Unified semantics for trustworthy systems engineering| Altreonic

Another aspect is that he might have noticed that the concepts are related. While we cannot really

change language we stick to the terms as they are but clarify the definitions and why they were chosen.

In addition, in the GoedelWorks environment the structure helps to enforce a specific meaning.

4.2 Requirements vs. Specifications
It might come as a surprise, but many safety and engineering standards don't even use the term

``specification''. Most standards will use the term ``requirement'' often with a qualifying prefix. An

example is the concept of High Level Requirements (HLR) and Low Level Requirements (LLR) in D0-178C,

even if this standard can be considered as relatively mature. Especially the LLR result in ambiguities like

recently discussed on a DO-178C LinkedIn discussion forum: ``Are LLR the same as design?''. In ISO-

26262 [9] a specification is defined as a set of requirements which, when taken together, constitute the

definition of the functions and attributes of item or element.

To eliminate the ambiguity we clearly distinguish between Requirements and Specifications. A

Requirement only becomes a Specification when it is sufficiently precise and constrained that we can

define a way to test it. We can say that a Specification is a quantified Requirements statement. It comes

into being by a refinement process that often will include trade-off decisions driven by the Project

constraints. The point is that development engineering activities can really only start when the

Specification stage has been reached, else we have too many degrees of freedom. Of course, this does

not prohibit early proof-of-concept prototypes.

4.3 The Safety case and the Hazard and Risk Analysis
In the methodology we outline, we do not specifically speak about "safety". This might come as a

surprise because many systems engineering standards focus on safety aspects. There is an historical

reason for this. First of all, traditional engineering often addresses safety aspects in an implicit way, e.g.

by applying well established safety margins and engineering practices. A typical example is construction

engineering. This primarily changed when programmable electronics were introduced. First of all,

electronics most of the time doesn't wear out perceptibly as the robustness margins at design and

manufacturing time are sufficiently high. This is however changing as the continuous shrinking of the

semiconductor features is reducing the margins. Another reason is the increased use of digital

components. They can fail within a single clock cycle, for example due to a power supply glitch or

another external disturbance. But most importantly, when programmed they become very complex and

error prone at design time. For this reason, most safety engineering standards focus on how to improve

the trust in the system from a safety point of view.

Traditionally, the engineer has here two main activities to do. The first is often called the HARA (Hazard

and Risk Analysis) and is used to properly identify prior to development the potential "hazards", in

essence the circumstances that can result in a safety risk. In terms of our methodology, the HARA results

in Requirements of the subtype "safety case", in contrast to the "normal case" and the "test case". The

normal case describes behavior and properties that we expect to have in the assumption that all works

as specified. The test case adds requirements related to testing (as it has an impact on the design). The

safety case adds the requirements whereby we explicitly take into account that things can go wrong. We

11 Unified semantics for trustworthy systems engineering| Altreonic

might e.g. take into account that the electronics can be influenced by an external electric field or that

the memory becomes corrupted. The safety case Requirements will then mandate that we can coop

with such circumstances. Form these Requirements we then deduce safety case Specifications giving us

the boundaries (e.g. maximum disturbances we can coop with or acceptable safety risk levels). Once

these have been determined, we can look at selecting an architecture or rather look for "safety

measures" that must be part of the architecture to mitigate the effects of hazard related risks. For

example, we can mandate that the electronics will be housed in a watertight enclosure and that we

have a back-up battery.

The safety engineering standards will typically also provide Requirements and Specifications on the

Process to be followed during the Project. For example, executing a Hazard and Risk Analysis is

mandatory. Or the software shall be developed using approved coding rules, etc. Often, a HARA will also

attempt to classify the hazard related risks in different severity classes allowing to relax the safety case

related specifications. This is an issue of debate centered around the concept of a fail-safe state. If a fail-

safe state results in the system loosing functional properties, can we then guarantee safety? This is in

particular troublesome when the system is dynamically controlled. For example when a car looses drive-

by-wire capability (literally, e.g. because a wire got broken) at high speed, can we then consider that

limiting the engine speed is a sufficient safety measure?

A second major activity typically happens during and after the design and development. This works

bottom-up and is often called an FMEA (Fault Mode Effect Analysis) and its variants like FTA (Fault Tree

Analysis). It looks at the consequences of a failing component and deduces what the potential hazards

could result from it. Typical example, if a power cable is broken, we lose the capability to control the

system which can result in a potential hazard.

Using the traceability chain we can see that there is no real difference between the different subtypes

(normal, test and safety case) of Requirements and Specifications in relationship to the System Entities

that fulfill them. The HARA and FMEA must in the end result in overlapping dependency chains, whereby

the safety analysis is only complete if all entities in the dependency tree can be approved. Hence the

safety engineering process is iterative by nature. This is reflected in some domains mandating that the

HARA and FMEA are repeated during and after architectural development.

4.4 Development, Verification, Testing and Validation
Another distinction is in the terms used to differentiate the Work Package Tasks. This was also

motivated by the different meanings different safety and engineering standards give to terms like

verification, testing and validation.

In the proposed methodology Verification is linked with Process Specifications whereas Development

and Testing are linked with System (product) or Project Specifications. In the case of Development,

Specification statements are necessary as input to guide the Development. Although, we say that

Testing verifies that the system Specifications were met, we reserve the term Verification for verifying

the way the Development was done. The logic behind this is that testing should not be used to find the

errors and deviations of the development activities but to find the deviations from the System's

12 Unified semantics for trustworthy systems engineering| Altreonic

specified properties. Similarly, Validation comes after Testing and is meant to verify that the System as a

whole (which implies that it includes Integration) meets the original Requirements statements. In

essence, does it meet the Mission Requirements? Note, that this Validation will include Testing

activities, typically by operating the System in its intended environment. It is not unlikely that this

Testing then measures deviations from the Specifications because the Integration has introduced factors

that were not accounted for. We call this the System Characteristics. If the development margins were

high enough we might even find that the System Characteristics are better than the System

Specifications (E.g. we measure 86 dB while 85 were specified). If we find lower values (e.g. 84 dB) than

it is a management or business decision to still accept the system as being ``good enough'' or to reject it.

4.5 The main complementary views in SE.
The meta-model we introduced actually covers three main views that together define the system being

developed. Before we elaborate on these, we should clarify what we mean with the term ``System''. In

the SE context, the System is what is being developed in a SE Process. However, a System is never alone,

it is an Entity on itself that always interacts with two other Systems. One is the environment in which it

will be used. This can literally be the rest of the real-world (e.g. a car drives on roads) or a higher level

system (e.g. an electronic injector on the power unit). Another one is the (human) operator actively

interacting with the System (e.g. an airplane pilot). When developing a System, one must always take

these two other Systems into account. Their interactions will influence the System under development

(typically by changing the System's state, either by changing its energy level, either by changing the

operating mode). The reader will notice that both Systems are characterised by the presence of

elements that we never have fully under control. A human operator can be assumed to always give

correct commands, but this cannot be guaranteed. The same for the environment. It can be anticipated

but not predicted how these two systems will behave. This is the essence of safety engineering.

In the end SE can be seen as the converge of three views. The first one is the well known requirements

view. It is concerned with the properties that Systems should and must have and relates to the well

known question of ``What is the right System?''. The second is the development or architectural view. It

consists of the activities that center around the development that produces the system. It is related to

the ``what system?'' question. The third one is the Process view. It defines ``How is the System to be

developed right?''. It defines on the one hand a partial order for the different Work Packages of the

Work Plan, but it also defines the evidence that needs to be present at the end of a SE Project. What is

less understood is that the deliverables of a SE engineering project are on the one hand the System itself

(although it really is a collection of Entities that create the System after integration) and on the other

hand the Process Work Products. In a systematic, controlled SE Project all these Work Products together

define the System. The Work Products document it and together with the dependency chain as a whole

provide the evidence that it meets the Specifications and Requirements. The Work Products also do not

stand on their own, but define dependencies as well. The final decision of acceptance (e.g. for

certification) is not an isolated one but the end-result of a whole tree of assumptions and dependencies.

13 Unified semantics for trustworthy systems engineering| Altreonic

The Process Work Products are sometimes called the artefacts as if they were by-products, which

underestimates their value. They make the difference between development as an engineering activity

and development as a crafting activity.

4.6 Morphing Work Products as Templates, Resources and Deliverables
Another important aspect to see is that a Process is also something that has to be developed like any

other System. A Process will often be developed by people using as input their experience as well as

real-world use cases. Developing a Process also requires a Work Plan and a set of Process Requirements

resulting in Process Specifications. The deliverables of such a Process developing Project are on the one

hand the Process itself and on the other hand the Specifications for the Work Products to be developed

in a concrete Project. In essence, a Process will define templates that need to be filled in during a

concrete Project. Hence, the Template becomes a Resource in a concrete Project whereby the

Deliverable is again a Work Product.

A simple example is a test plan. A Process will define what we can expect from a test plan in generic

terms (e.g. completeness, confidence, etc.). It acts as a Reference for further instantiation. Therefore, an

organisation will have to derive an organisation, often domain specific test plan, but still a template

enhanced with organisation specific procedures and guidelines. In a concrete project this enhanced

template is a Resource that after the Work Package developing the Entity has been approved becomes

part of the evidence that the Entity meets the Specifications.

This ``morphing'' of entities is another reason why often terminology can be confusing. It is related to

implicit or explicit reuse of previously developed ``Entities'' and actually this is what engineering does all

the time. All new developments somehow always include prior knowledge or reuse previously

developed Entities that become components or Resources for new Projects. On the other hand it

simplifies the understanding of SE by being aware that the finality of a SE Project is always a (coherent)

set of Work Products. The Project and the Process are never the finality but the main means to reach

the approved state of the Work Products.

4.7 Links and Entity Dependencies
In a real Project, the number of Entities grows quickly. This induces the need to group and structure

them. Therefore we define ``structural'' links, i.e. an Entity can be composed of sub-Entities. This is not

an operation of refinement but one of decomposition. An example is a Requirement that states ``The car

should drive like a sports car''. This can be decomposed into requirements that relate to what people

expect from a sports car, e.g. related to the engine power, acceleration, top speed, gear box,

suspension, etc.

If we now make these Requirements concrete, we obtain Specifications that are derived from them. For

example the Requirement ``Has a top speed in the top 10 car ranking'' results in a Specification ``Has a

top speed of at least 250 km/h''. This Specification will need to be fulfilled by specific System Entities.

For example, we can first build a physical simulation Model that given parameters like mass and

acceleration allow us to determine the engine specifications. We can then select a number of engines

14 Unified semantics for trustworthy systems engineering| Altreonic

that meet the Specifications. The exercise of linking Specifications with Model Entities is one of

mapping.

What the different steps did is creating dependency relationships. The engine characteristics depend on

the Specifications and the Specifications depend on the Requirements. The Work Package related to

developing the car power group will also depend on Resources. The composing Tasks also define

dependency relationships. The Validation will depend on the Testing with the Testing depending on the

Verification and the Verification depending on the Development.

These dependency relationships give us also the traceability requirements, allowing to trace back e.g.

from the executing software source code back to the original Requirements. If the dependency chain is

broken, we know that something was overlooked or not fully analysed. This property is further discussed

in the next section.

The example also illustrates another aspect that is tightly related with Requirements management.

Assume that there is a Requirement saying ``Fuel consumption shall be within the lowest 5% of the

market'' or ``The car must be bullet proof''. These two Requirements are likely in conflict with the sports

car driving one. While these examples are straightforward, in practice this might not be so trivial. This is

why the different Models are needed. Simulation modelling or virtual prototyping allows us to verify the

consistency of the Requirements in view of the available technology (found back as parameters of the

model). For example, unless someone invents an ultra-efficient and ultra-powerful engine, the designer

will have to choose and make trade-offs between either a fuel-efficient and light car, either a powerful

and light car but with a higher fuel consumption or a very safe but heavy and fuel-inefficient car.

Similarly, when using formal models we use them to verify critical properties. Often there is a

relationship between being able to prove such properties and the complexity, read: architecture, of the

System. For example if safety properties can't be proven, often the System will need to be restructured

and simplified (which has also other benefits). The point here is that the dependency relationships

introduce the necessity of iteration. Figure 3 illustrates some of the dependency links within the

GoedelWorks meta-model and views. The dashed lines indicate implicit links, for instance in order to

test the output of a Development Task in a Test Task it is necessary to know which Specifications were

defined as input to the Development Task.

15 Unified semantics for trustworthy systems engineering| Altreonic

Figure 3 Main dependency links between GoedelWorks entities and views

4.8 State Transitions and Process Flow
The dependency chains identified earlier seem to indicate that a project always proceeds top-down,

from Requirements till implementation. When taken literally (like in the waterfall process model), this

cannot work because as we have seen Requirement statements do not necessarily form a coherent set

and at least some modelling will be needed to weed out overlapping or to make the right trade-off

decisions. In practice, some Entities will already exist or have been selected (e.g. when using COTS) and

the dependency link is created later on. The way to introduce iterative processes is by assigning a

``state'' to the Project entities and combining them with the dependency relationships. Typically a

Project entity will be created and becomes ``Defined''. At some point in time it will become ``In Work''

and when it has been properly worked on, it can become ``Frozen for Approval''. Following a subsequent

review, it can then become ``Approved''. More subtler states can be defined but we illustrate the

principle using the main ones.

The state ``Approved'' can only be reached if we follow the dependency chain in the reverse order. An

entity can only be approved if the preceding entities in the chain have been approved. If any of them is

not or looses that status, e.g. because of an approved Issue or Change Request, all depending entities

loose that status as well.

The result is that we have now for each Work Product (that includes Models) a separate iterative flow,

even if the overall Process flow is following a V-model, as illustrated in Figure 4. The order doesn't come

from having predefined a temporal partial order between the Work Packages but from the precedence-

dependency chains. Nothing prevents us from starting to work on all in parallel and in any order that is

practical. The only order that is imposed is the order in which entities can be approved.

16 Unified semantics for trustworthy systems engineering| Altreonic

4.9 Pre-qualified components
An important conclusion of the proposed process flow is that we now formulate when a product or a

system can be certified to meet e.g. a given safety engineering standard. This is best illustrated by

considering for example a processor chip. Such a chip is often an key component in an electronic system

and available through commercial channels from the semiconductor manufacturer. It will be

programmed with software, typically itself consisting of "firmware" (a selected RTOS, board specific

drivers, libraries) and the application software. But as we have seen, to approve the application as a

whole all entities in the dependency chain must have been approved as well. In other words, each of

these must have been validated, tested and verified to meet requirements and specifications. As such,

this is not possible for commercial off the shelf (COTS) components or software tools and components.

For example, the processor chip will have a datasheet and a hardware description in a documented

form, but what assurance do we have that the description matches the component? As all developers

know the data book describes but often does not explain all the details. There are likely documentation

errors. Or the software libraries will not have been updated when the chip's design was upgraded or

lurking silicon bugs are still hidden in the silicon.

Figure 4 The overall V-Model Process Flow of GoedelWorks

17 Unified semantics for trustworthy systems engineering| Altreonic

To come to an "approved" component, all the evidence need to be present in a coherent way

demonstrating the exact behavior of the component, including the unavoidable deviations. For example

a silicon bug is not an issue if it is identified and if the software or hardware work-arounds are

implemented and proven to be trustworthy. This way, the component can be integrated in a larger

subsystem, etc.

It should be clear that if we want to achieve a higher level of trustworthiness in systems and products

developed and aiming at a lower cost, that it is an advantage to use pre-qualified components and sub-

system assemblies. The standard COTS approach has a hidden costs whereby every user or customer has

over and over again to find the discrepancies between what the datasheet specifies and what the

component does and even then he is never sure that there are no hidden errors left.

The solution therefore is to have components that come with their qualification evidence, in essence the

collection of approved and validated Process and Project entities in a single package. This can justify a

higher selling price. At the same time, we like to point out that the availability of source code (be it for

software or any other domain) in itself is not a sufficient guarantee either. The source code needs to be

verifiable, readable and commented, linked with the design documentation etc. Even when "proven in

use", sometimes the only evidence left if no systematic development process was followed, trust has it

limits when the software versions change too fast. In many cases, it will be safer to rely then on an older

but known to be stable version.

5 Unified SE vs. Domain Specific Engineering

Another aspect that is worth highlighting is that the unified Process flow and meta-model we described

is not specific for a particular domain. The reasoning applies to business processes, which can be

classified as social engineering processes, as well as to technical engineering processes. In all cases, once

we have agreed on what we need, we can define what will meet the needs and how we will reach that

goal.

In the industry, much attention goes to supporting the development of safety critical systems and as

such safety standards often define for each domain which process to follow. Each of them also has it

own terminology. By introducing the generic meta-model (actually a meta-meta-model) we can cater for

the different domains by defining subtypes.

We illustrate this by analysing Requirements. Requirements are often obtained by defining ``use cases'',

often descriptions of scenarios that highlight some operational aspect of the system. When using UML,

this will be done by a little graphic element representing a ``user'' (virtual or real). We prefer to subtype

a Requirement into three classes, i.e. the ``normal case'', the ``test case'' and the ``fault case'' (see also

section 4.3). These can be seen as refinement of the generic ``use case''. These cases are defined as

follows:

18 Unified semantics for trustworthy systems engineering| Altreonic

 Normal case: This related to a Requirement that covers the normally expected behaviour or

properties. An example is our sports car.

 Test case: This relates to a Requirement that covers a mode in which the system is ``tested''. An

example is a processor chip on which test points need to be available to e.g. measure certain

operational parameters (voltage, temperature). Test cases do not modify the ``normal case''

Requirements but have an impact on the architectural design.

 Fault case: This relates to a Requirement whereby faults in the system are considered. Faults are

defined as occurrences whereby some components no longer meet their ``normal case''

Specifications (derived from ``normal case'' Requirements). An example is the loss of main

power. Safety engineering then prescribes what we expect of the System when these occur.

Hence we can consider a ``safety case'' as a subtype of a ``fault case''.

The approach whereby we start from a higher level more abstract meta-model allows us also to e.g.

consider security aspects as a fault case. We can say that e.g. a security case is a fault case whereby the

fault is maliciously injected versus a safety case whereby the fault is often physical in origin. This allows

us to reuse a safety engineering approach (for which documented standards exist) to a security

engineering approach (for which documented standards are often lacking).

6 GoedelWorks as a supporting Environment

While the unifying SE approach we outlined above provides us with a coherent framework, its

applicability can only be validated by applying it to a real project whereby we have the issue that real

projects very rapidly generate 1000's of entities. In addition we were of the opinion that such an

environment requires the capability to support distributed multi-user project teams.

Therefore, first prototype environments were build, leading to early versions called ``OpenSpecs'' and

``OpenCookBook'' [5]. They allowed to refine the system grammar further, execute small test projects,

but most importantly to find a suitable web based implementation. The latter was not so trivial as the

complexity of a project database is rather high (largely due to the various links between the entities) and

because of the ergonomic needs.

The final implementation was therefore entirely based on a client-server architecture using a browser as

client and a database server. As such, GoedelWorks had additional requirements mostly related to the

usability aspects:

 International multi-user support with entity specific access rights

 Security and privacy of the project data

 Capability to define, modify import and export processes and projects

 Create and manage process and project entities according to the system grammar

 Change and entity state management

 Queries and dependency analysis

19 Unified semantics for trustworthy systems engineering| Altreonic

 Creating ``snapshot'' documents (html or pdf).

 Resource and Task planning.

Without going into detail, such an environment acts as a unique and central project repository for

Processes and Projects, facilitating concurrent team work and communication from early Requirements

capturing until final implementation. Interested readers are referred to the publication [4].

Figure 5 GoedelWorks architecture

20 Unified semantics for trustworthy systems engineering| Altreonic

6.1 Importing the Automotive centered Safety Integrity Level (ASIL) Process
One of the issues in Systems engineering is that when certification is a Requirement, many standards

can be applicable. Legal Requirements will differ from country to country and depend on the application

domain. In addition, standards are often either prescriptive but often outdated with respect to

technology, either goal oriented but leaving it up to the engineering organization to follow a certifiable

Process. This is a bit unfortunate as we have shown that Systems engineering is very universal. The

current situation is due to historical reasons and the state of the practice, including legal preoccupations

in relationship to liability issues. For the following we will limit ourselves to certifiable safety standards,

applicable in the context of the automotive and machinery industry. These were introduced when the

complexity increase resulting from the introduction of programmable electronics forced to think more

systematically about how Systems with safety risks needed to be developed.

6.1.1 Safety standards for embedded reprogrammable electronics}

The root of these standards is IEC-61508. It covers the complete safety life cycle, but needs

interpretation for a sector specific application. It originated in the Process control industry sector.

The safety life cycle has 16 phases which roughly can be divided into three groups: analysis, realization

(development) and operation. All phases are concerned with the safety function of the System.

Composed of 7 Parts, Parts 1-3 contain the Requirements of the standard (normative), while 4-7 are

guidelines and examples for development and thus informative.

Central to the standard are the concepts of risk and safety function. The risk is seen as a statistical

function of the hazardous event and the event consequence severity. The risk is reduced to a tolerable

level by applying safety functions which may consist of electric, electronic or embedded software or

other technologies. While other technologies may be used in reducing the risk, IEC 61508 only considers

the electric, electronic and embedded software. From this standard, extensions were developed for

specific segments. For example:

 Automotive: MISRA and later ISO-26262

 Railway: EN-50128

 Process Industry: IEC-61511

 Nuclear Power Plants: IEC 61513

 Machinery: IEC 62061

6.1.2 ASIL: a common safety engineering Process focused around ISO-26262

While in principle GoedelWorks can support any type of Project and Process, its meta-Model was tuned

for Systems engineering Projects with a particular emphasis on safety critical Processes and certification.

Organizations can add and develop their own Processes as well as import them (when made available in

a proper format).

A first Process that was imported is the ASIL Process. The ASIL Process is a Process based on several

safety engineering standards, but with a focus on the automotive and machinery domain. It was

developed by a consortium of Flanders Drive [7] members and combines elements from IEC 61508, IEC

21 Unified semantics for trustworthy systems engineering| Altreonic

62061, ISO DIS 26262, ISO 13849, ISO DIS 25119, ISO 15998, CMMI and Automotive Spice. These were

obtained by dissecting these standards in semi-atomic requirement statements and combining them in a

iterative V Process Model. It was enhanced with templates for the Work Products and domain specific

guidelines.

In total the ASIL Process identified about 3800 semi-atomic requirement statements and about 100

Process Work Products, although this is a still on-going effort. The ASIL Process also identifies 3 Process

domains:

 Organizational Processes.

 Safety engineering and development Processes.

 Supportive Processes.

The ASIL Process Flow was imported by mapping all ASIL Entities on GoedelWorks Entities and adding

the missing Entities, association and structural links. Examples are:

 Upon Work Package creation, a set of Tasks is added and structurally linked. The user can then

add more Tasks as needed.

 Specification and Requirements Entities are added for the Work Products, whereby the

extracted semi-atomic requirements became References.

For this reason the imported ASIL still needs to be completed to create an organization or Project

specific Process. It is also likely that organization specific Processes will need to be added. As each Entity

in GoedelWorks can be edited, this is directly possible on a GoedelWorks portal.

6.2 Certification vs. Validation
If a Systems engineering Project reaches the validation stage and the System is approved, why is

certification still needed? Certification is first of all a legal Requirement. By definition, it is not a good

practice if certification would be done by the same organization that executed the Project. Even the best

organization and best possible Process is still executed by humans and the whole goal of the Systems

Engineering Process is to maximize success in a cost-efficient way. Therefore, certification has to be seen

as an extra re-validation step executed by an external auditing organization. Certification does not try to

discredit the Project's results, it seeks confirmation that the Requirements, at least those relevant for

the certification, were met and that there is evidence that everything was done that needed to be done.

Therefore, certification is often based on examining and reviewing the ``artefacts'', essentially the trail

of evidence generated during the Project, but it will also execute spot checks and everything else that

might be needed.

Producing the evidence is something that must be done during the Project when the work is actually

done. Examples are test reports, issue tracking, meeting reports, etc. This work is what often scares

companies as it doesn't come for free [6]. Following a Process costs extra time and Resources, but has

also benefits. The Project will become more predictable and traceable, errors are detected in an early

stage (when they cost less to correct) and when considering life-cycle costs, it might turn out to be cost-

22 Unified semantics for trustworthy systems engineering| Altreonic

efficient, especially if support and maintenance costs are included. In the worst case, a serious issue can

be discovered when the System is in operational use and recalls to fix these issues can be very costly,

not only financially but also in reputation damage, etc. Therefore, certification is a must, but there is

every interest to reduce the cost. The GoedelWorks environment contributes to this on several levels-

by automating the engineering Process:

 The organization uses a standards-aware Process.

 The approval Process reduces rework and double work.

 The certification artefacts are generated during development.

 Organizations can ``pre-certify'' by following the Process.

The cost of running a Systems engineering Project will also be reduced because the GoedelWorks server

keeps track in a central repository of all changes and dependencies allowing to find issues in an earlier

stage. In addition, people all over the world can collaborate because all data is centrally located and

edited.

7 Conclusions

This paper presents a unifying meta-model to develop and describe System Engineering processes and

projects, independently of the domain. SE is formalized through the use of a unifying paradigm based

on the notion that in most domains every system, including a process, can be described at an abstract

level as a set of interactions and entities. A second observation is that a key problem in SE is the

divergence in terminology, hence the use of unified semantics by defining a univoque and orthogonal

set of concepts. We emphasize on interactions as a base concept of our approach more than on entities

as e.g. in the object-oriented paradigm. This is supported by the use of a “systems grammar” that

provides a standardized ontology and meta-model that defines the dependencies from the start.

GoedelWorks as a practical implementation of a supporting environment was developed. It was

validated by defining some real projects as well as by importing a generic automotive focused process

flow.

Acknowledgments

Part of the work has been done under ITEA funding, project EVOLVE (Evolutionary Validation,

Verification and Certification) 2007 - 2010.

References

1. Object Management Group: UML. http://www.uml.org/.

2. OMG Systems Modeling Language. http://www.omgsysml.org/.

3. E. Verhulst, R.T. Boute, J.M.S. Faria, B.H.C. Sputh, and V. Mezhuyev. Formal Development of a Network-Centric
RTOS. Software Engineering for Reliable Embedded Systems. Springer, Amsterdam Netherlands, 2011.

23 Unified semantics for trustworthy systems engineering| Altreonic

4. Trustworthy Systems Engineering with GoedelWorks, Jan. 2012. Booklet in series Systems Engineering for
Smarties". Published by Altreonic NV under Creative Commons license. Available from
http://www.altreonic.com/sites/default/files/Systems%20Engineering%20with%20GoedelWorks_0.pdf

5. V. Mezhuyev, B. Sputh, and E. Verhulst. Interacting entities modeling methodology for robust systems design. In
Advances in System Testing and Validation Lifecycle (VALID), 2010 Second International Conference on, pages 75 -
80, Aug. 2010.

6. H. Espinoza, A. Ruiz, M. Sabetzadeh, and P. Panaroni. Challenges for an open and evolutionary approach to
safety assurance and certification of safety-critical systems. In Software Certification (WoSoCER), 2011 First
International Workshop on, pages 1-6, 29 2011-dec. 2 2011.

7. Automotive Safety Integrity Level Public Results.
http://www.flandersdrive.be/_js/plugin/ckfinder/userfiles/files/ASIL%20public%20presentation.pdf, 2011.

8. DO-178C, Software Considerations in Airborne Systems and Equipment Certification.
http://en.wikipedia.org/wiki/DO-178C, last visited 25.06.2012.

9. ISO_26262, Automotive functional safety. http://en.wikipedia.org/wiki/ISO_26262, last visited 25.06.2012.

